Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 23

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Development of dry rework technology in MOX fuel fabrication process; Selection and characterization of pulverizer for particle size adjustment of dry recycled powder

Yamamoto, Kazuya; Makino, Takayoshi; Iso, Hidetoshi; Segawa, Tomoomi; Kawaguchi, Koichi; Ishii, Katsunori

JAEA-Technology 2021-002, 31 Pages, 2021/05

JAEA-Technology-2021-002.pdf:4.37MB

In the MOX fuel fabrication process, a dry recycle technology has been developed to effectively utilize dry recovered powder obtained by crushing out of specification MOX pellets. The particle size of the dry recovery powder is divided into three classes; coarse size (about 250 $$mu$$m or less), medium size (about 100 $$mu$$m or less), and fine size (about 10 $$mu$$m or less) by the current crushers, and the effect of controlling the density of sintered pellets is obtained to a certain extent by adding the dry recovered powder to the raw powder. In this report, with the aim of more finely adjusting the particle size of the dry recovery powder, a buhrstone mill and a collision plate-type jet mill were selected as grinders that can adjust the dry recovered powder within a particle size range of 250 $$mu$$m or less, and the particle size adjustment test was conducted to pulverize the tungsten-carbide-cobalt (WC-Co) pellets as a simulated material for the MOX pellets. The buhrstone mill can control the particle size within a certain range by adjusting the grindstone clearance, but particles with a particle size of 250 $$mu$$m or more may be discharged. On the contrary, it is expected that the particle size of the collision plate-type jet mill can be controlled in the range of 250 $$mu$$m or less by adjusting the classification zone clearance. Therefore, the collision plate-type jet mill is more suitable for adjusting the particle size of the dry recovered powder than the buhrstone mill.

Journal Articles

Technological development of the particle size adjustment of dry recovered powder

Segawa, Tomoomi; Yamamoto, Kazuya; Makino, Takayoshi; Iso, Hidetoshi; Kawaguchi, Koichi; Ishii, Katsunori; Sato, Hisato; Fukasawa, Tomonori*; Fukui, Kunihiro*

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.738 - 745, 2019/09

In the MOX fuel fabrication process, the dry grinding technology of mixed oxide pellets have been developed for the effective use of nuclear fuel materials. To develop a technology to control the particle size of dry recovered powder, the performance of the buhrstone mill and the collision plate type jet mill were studied using a simulated powder of particle size distribution about 500 $$mu$$m. We found that the particle size can be controlled at the range of about 250 $$mu$$m or less by both by adjusting the clearance between the grinding wheels of the buhrstone mill, and the clearance and elevation angle of the clarification zone of the collision plate type jet mill. And furthermore, the collision plate type jet mill is considered to be suitable for particle size control because the operating parameters of the classifier can be finely adjusted.

Journal Articles

Challenges for enhancing Fukushima environmental resilience, 4; Development of physical and heat treatment methods on aiming at decontamination, volume reduction and reuse of contaminated soil

Yaita, Tsuyoshi; Honda, Mitsunori; Shimoyama, Iwao; Ito, Kenichi*; Mampuku, Yuzo*; Tsuji, Takuya; Matsumura, Daiju

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 59(8), p.483 - 487, 2017/08

no abstracts in English

Journal Articles

Production of fine powder from silk by radiation

Takeshita, Hidefumi; Ishida, Kazushige*; Kamiishi, Yoichi*; Yoshii, Fumio; Kume, Tamikazu

Macromolecular Materials and Engineering, 283, p.126 - 131, 2000/11

no abstracts in English

Journal Articles

Production of fine powder from silk by radiation

Takeshita, Hidefumi; Ishida, Kazushige*; Kamiishi, Yoichi*; Yoshii, Fumio; Kume, Tamikazu

Shokuhin Shosha, 35(1-2), p.49 - 53, 2000/10

no abstracts in English

Journal Articles

Production of fine powder from silk by radiation

Takeshita, Hidefumi; Ishida, Kazushige*; Kamiishi, Yoichi*; Yoshii, Fumio; Kume, Tamikazu

JAERI-Conf 2000-003, p.139 - 145, 2000/03

no abstracts in English

JAEA Reports

None

; ; Aose, Shinichi; ; ;

PNC TN8410 93-081, 89 Pages, 1993/04

PNC-TN8410-93-081.pdf:4.42MB

None

JAEA Reports

None

PNC TN8420 92-011, 42 Pages, 1992/06

PNC-TN8420-92-011.pdf:1.02MB

None

Journal Articles

Pretreatment of lignocellulosic wastes by combination of irradiation and mechanical crushing

; ; Kaetsu, Isao

Biomass, 2, p.299 - 308, 1982/00

 Times Cited Count:23 Percentile:90.36(Agronomy)

no abstracts in English

Oral presentation

R&D on nitride fuel cycle for MA transmutation to enhance safety and economy, 4; Correlation of milling condition and sintered density of nitride fuel surrogate material

Takaki, Seiya; Harada, Makoto; Takano, Masahide

no journal, , 

It is necessary to control the pellet densities for the purpose of securing margin against swelling for nitride fuel for transmutation of minor actinide. Appropriate polymer particles will be applied as a pore former in order to decrease the density. This study aimed to investigate the influence of various milling parameters on the densities of sintered Dy$$_{0.3}$$Zr$$_{0.7}$$N solid solution as surrogate nitride fuel in order to obtain fundamental knowledge for controlling sintered density with pore former. The sintered pellet densities are studied under various milling condition. The measurement of specific surface area clarifies that finer powder can be obtained with WC. However, the achieved densities of the sintered pellets show that the denser pellets can be obtained with Si$$_{3}$$N$$_{4}$$ in spite of the smaller specific surface area.

Oral presentation

Technological development of the particle size adjustment of recycle powder, 1; Characterization of jet mill

Kawaguchi, Koichi; Segawa, Tomoomi; Yamada, Yoshikazu; Suzuki, Masahiro

no journal, , 

For the purpose of pulverizer selection for a dry recycled MOX powder with the size distribution suitable for a sintered density adjustment of MOX pellet, characterisity and performance of several types of pulverizer were evaluated. In this session, results of pulverizing characterisity of two jet mills with different working pressure are reported.

Oral presentation

Technological development of the particle size adjustment of recycle powder, 3; Optimization study of collision plate-type jet mill

Segawa, Tomoomi; Yamamoto, Kazuya; Makino, Takayoshi; Iso, Hidetoshi; Sato, Hisato

no journal, , 

The optimizing the centrifugal classifier which influences the classification performance of collision plate-type jet mill was examined for the purpose of the particle size adjustment of recycle powder the MOX pellets. In order to adjust the particle size of recycle powder to 10-250 $$mu$$m, the pulverization test of the simulated raw powder was carried out using the newly prepared components as a parameter. The prospect that the particle size can be adjusted within the range of 10-250 $$mu$$m for recycle powder was obtained by optimizing the parameter of the centrifugal classifier of collision plate-type jet mill.

Oral presentation

Technological development of the particle size adjustment of recycle powder, 2; Selection and evaluation of pulverizers

Yamamoto, Kazuya; Makino, Takayoshi; Iso, Hidetoshi; Sato, Hisato

no journal, , 

no abstracts in English

Oral presentation

Pulverization characteristics of a collision plate type jet mill for particle size adjustment of recovered powder in the MOX fuel fabrication process

Kawaguchi, Koichi; Segawa, Tomoomi; Yamamoto, Kazuya; Makino, Takayoshi; Iso, Hidetoshi; Ishii, Katsunori

no journal, , 

The reworking of out of specification pellets is required for the effective use of nuclear fuel material and for reduction of the plutonium inventory in fuel fabrication facilities. It is known that the sintering density of mixed oxide pellets can be controlled without a pore-former by controlling the amount and particle size of the recovered powder in the raw powder. The collision plate type jet mill was separated into the classifier and the mill chamber, and these modules were used independently. The peak position shifted to smaller sizes gradually over the five cycles of classification and pulverization. The collision plate type jet mill is a promising form of equipment to obtain particles with objective sizes as the main component of a powder.

Oral presentation

Technological development of the particle size adjustment of recycle powder, 4; Pulverization characteristics of collision plate-type jet mill

Makino, Takayoshi; Yamamoto, Kazuya; Segawa, Tomoomi; Kawaguchi, Koichi; Iso, Hidetoshi

no journal, , 

The purpose of this study is to develop technology of the particle size adjustment of dry recovered powder of MOX pellets. Pulverization and classification experiments were conducted using simulated pellets obtained from materials having similar hardness and different density (specific gravity). We report that the results of pulverization and classification experiments in which experimental parameters were the clearance of the centrifugal classifier affecting the classification performance of the collision plate type jet mill.

Oral presentation

Research on the improvement of particle size adjustment technology of dry recovered powder and the sintered density control

Segawa, Tomoomi; Kawaguchi, Koichi; Ishii, Katsunori; Yamamoto, Kazuya; Makino, Takayoshi; Iso, Hidetoshi; Fukasawa, Tomonori*; Fukui, Kunihiro*

no journal, , 

Japan Atomic Energy Agency has been used out of specification mixed oxide (MOX) pellets as a dry recovered powder for the effective use of nuclear fuel material in the MOX fuel fabrication process. The densities of the sintered MOX pellets can be controlled to about 85 %T.D. without adding pore former by adjusting the amount and the particle size of the dry recovered powder into the raw powder. It is required to adjust the particle size of the dry recovered powder to under 250 $$mu$$m, the influence of the operating parameters of the collision plate-type jet mill on the characteristics of pulverization and the influence of pulverized powders on sintering properties were evaluated. The clearance was narrowed, the pulverized powders were confirmed to be adjusted for the particle diameter of under 250 $$mu$$m, and the pellet prepared from the pulverized powder with density of about 85.0 %T.D. was obtained.

Oral presentation

Technological development of the particle size adjustment of recycle powder, 5; Evaluation of the particle size adjusted powder on the sintered pellet characteristics

Yamamoto, Kazuya; Segawa, Tomoomi; Makino, Takayoshi; Kawaguchi, Koichi; Iso, Hidetoshi; Ishii, Katsunori

no journal, , 

no abstracts in English

Oral presentation

Analysis of the property of the collision-plate-type jet mill

Kawaguchi, Koichi; Segawa, Tomoomi; Ishii, Katsunori

no journal, , 

JAEA has developed the fuel powder recycling technology, in which the scrap pellet is pulverized and mixed into raw fuel powder. By analyzing particle size distribution before and after pulverization, it is shown that the pulverized powder consist of 3 types of particles with different character of particle size distribution. Furthermore the prediction method for particle size distribution of pulverized powder was investigated.

23 (Records 1-20 displayed on this page)